Directed and emergent order

A system can be defined as a set of interconnected elements that form a coherent whole with a distinct pattern of behaviour. These elements or agents can be as diverse as animals, cells, humans, organisations or businesses. In contrast to an aggregate, in a system the properties of the elements depend on the systemic context within which they are located. In other words, the system consists of the elements and, in turn, the elements are influenced by the systemic whole (Juarrero, 1999). For example, as part of a community people shape the way things work in the community but their individual behaviours are in turn shaped by the rules and norms of the community they create. This phenomenon is called emergence.

Kurtz and Snowden (2003) describe in their paper two different types of order in natural systems: ‘directed order’ and ‘emergent order’.

A machine: an example of a complicated system with directed order.

Directed order describes a system where “the relationship between an action and its consequences is knowable by bringing in relevant expertise” (Hummelbrunner & Jones, 2013:2). In this space, solutions can be designed as it is clear what the problem is and an agreement can be found on how it can be fixed. These systems can be highly intricate and analysis difficult, which is when they are called complicated. In complicated contexts, the system can be taken apart, defective individual elements can be fixed or optimised and then the system can be put back together. This can be seen for example when a car engine is fixed or when parts of a solar power generation plant are optimised. This works because the functionality of the system is given by the sum of the functionality of the parts. Taking the system apart and fixing or optimising parts individually leads to improved performance of the overall system. If one part fails, these systems often malfunction completely.